The bumblebees inside the boxes don’t seem to like it, either. My host from Bee Vectoring Technology, a Toronto startup, tells me the insects prefer calmer days and warmer temperatures. In better weather, I might have seen the pollinators buzz out of the nickel-size holes at the ends of the boxes at a regular clip, dipping from flower to flower in the surrounding field, each carrying an unusual delivery: a white dust formulated to protect the strawberries from a type of rot known as Botrytis cinerea, or gray mold. The dust contains a benign fungus, Clonostachys rosea. It colonizes the inside of plants, blocking the growth of the nastier mold—a biologically based alternative to a cocktail of synthetic fungicides, which are getting more difficult to use. Todd Mason, BVT’s lead scientist, strides into the strawberry field, ruddy-faced and in short-sleeves despite the weather. He raps on a hive. The buzzing crescendos, but no bees come out to investigate the source of the disruption. Mason shrugs and then surveys the field, rubbing his hands together. “I’m going to take some samples,” he says, grabbing a handful of Ziploc bags. His goal: to gather strawberry blooms so he can measure how much of the white dust the bees left on more pleasant days. This field is one of several demo trials in North America and abroad. BVT is already convinced—based, in part, on decades of research from scientists at the University of Guelph in Ontario—that the white dust can fend off the gray mold that afflicts strawberries and numerous other crops. The purpose of the trials is to prove to farmers that this unconventional pesticide, with its unconventional delivery method, works in real fields, where the weather—and the bees—don’t always cooperate.