CRISPR technology will ultimately impact what we eat, wear, and how we maintain our health — and it just crashed successfully into the big party known as the Advanced Transportation revolution. Specifically, a new path to producing fuel molecules that replace diesel. For some time we have seen tremendous activity around the development of CRISPR gene-editing technology — allowing scientists to directly clip and insert genetic material.Now, Fuzhong Zhang, associate professor at the School of Engineering & Applied Science updated the Digest this week and noted that “We designed and then constructed a synthetic metabolic pathway inside the fast-growing E.coli by introducing genes from other species, including Staphylococus aureus, cyanobacteria and soil bacteria. By using CRISPR, we incorporated genes from different species with favorable traits into E.coli’s fatty acid pathway.”Zhang’s research focuses on engineering metabolic pathways that, when optimized, allow the bacteria to act as a biofuel generator. In its latest findings, recently published in Biotechnology for Biofuels, Zhang’s lab used the best bits of several other species — including a well-known pathogen — to enable E.coli to produce branched, long-chain fatty alcohols (BLFLs).